
J .  Fluid Mech. (1977), vol. 83,  part 1, p p .  33-47 

Printed in Great Britain 
33 

Laminar boundary-layer flow past a two-dimensional slot 

By IAN J. SOBEY 
Department of Applied Mathematics and Theoretical Physics, University of Cambridge7 

(Received 5 January 1977) 

Observat,ions by Cornhill & Roach ( 1  976) of sudanophilic lesions in the vicinity of 
intercostal arteries in rabbit aortas have shown that lesions develop on the downstream 
side of the associated ostia. There is considerable conjecture as to the role which 
varying levels of wall shear stress play in the development of such lesions; Cornhill & 
Roach implicate high wall shear stress levels. We develop a consistent model of steady 
boundary-layer flow past a side slot assuming that there is Stokes flow in the side slot 
and that the main body of the boundary layer remains undisturbed. Our results show 
that increased levels of wall shear stress occur both upstream and downstream of the 
slot. If the withdrawal of fluid through the side slot is sufficiently great there may be 
a stagnation point on the downstream side of the slot. The wall shear stress level near 
the slot depends on both normal and transverse motions at  the mouth of the slot. 
Indeed, very near the slot, on a length scale comparable with the slot width, the wall 
shear stress level depends only on the transverse motions at  the mouth of the slot. 

1. Introduction 
Recently Cornhill & Roach (1976), hereafter referred to as CR, have reported a 

quantitative study of the localization of atherosclerotic lesions in the rabbit aorta. The 
motivation for the present work arose out of observations reported to us at  a pre- 
liminary stage by Roach (1975, private communication). In their study CR measured 
the size and location of early sudanophilic lesions in the aortas of five rabbits. They 
found that a lesion was most likely to be observed near an orifice. Generally the lesion 
would be located downstream of the associated ostia, the entrance to the intercostal 
artery. This observation has prompted CR to the conclusion that their work gives 
further substantiation to Fry’s hypothesis that increased levels of wall shear stress 
increase the permeability of the arterial wall to lipids in the bloodstream (see Fry 1973). 
Underlying the conclusions of CR are mathematical (Davids & Kandarpa 1974) and 
experimental models (Lutz, Cannon & Munroe 1974) of flow in symmetric bifurcations, 
which predict that, in the area of the flow divider in a bifurcation, elevated wall shear 
stress levels are to be expected. However since the situation near the intercostal ostia 
differs substantially from that of a symmetric bifurcation we feel that further evidence 
is necessary to support the conclusions of CR. 

Briefly, the intercostal arteries are small vessels which carry blood to the intercostal 
muscles, muscles attached to the rib cage which are available (but not always used) to 
aid breathing. Only a small fraction of the blood flowing down the aorta actually 
passes into the intercostals. In  the rabbits treated by CR areas of intercostal ostia 
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were of the order of 0.3-0.5 mm2, giving a radius of about 0.3 mm. The descending 
aorta would be of radius 2-3 mm. 

It would seem that the model closest to the physiological situation is one of a side 
tube joining a much larger tube with a small withdrawal fraction through the side tube. 
Recently Smith (1976) has modelled injection into a cylindrical tube using the 
techniques of modern boundary-layer theory. I n  order to make his model tractable 
Smith assumed that the flow a t  the entrance to the side tube was normal to the wall 
of the main tube. Using this assumption he derived a solution in the main tube by 
means of a triple-deck analysis. We show below that his solution is unlikely to be 
accurate very near the side tube, whilst it is a good approximation far from the side 
tube. 

I n  the model we present here an important feature is the existence of transverse 
velocities a t  the mouth of the side tube. We assume that the side tube adjoins a semi- 
infinite region of boundary-layer flow over a plate. By making this assumption we are 
to a certain extent invalidating the application of our theory to flow near the inter- 
costals, but because of the small ratio of the intercostal radius to the aortic radius, we 
should still expect that the flow over a flat plate would be a good approximation to the 
actual flow. Thus whilst we choose to ignore the global geometry and concentrate on 
the local dynamics, Smith has ignored the local dynamics to obtain a model of the flow 
in the main tube far from the side tube. It is to be hoped that the two theories will 
result in an adequate picture of flow in an asymmetric bifurcation. 

Consider a flat plate which has a side slot joined to it a t  a distance L from the leading 
edge (see figure 1). Over the plate there is a laminar boundary-layer flow with free- 
stream velocity U,. The fluid has kinematic viscosity v and we define a Reynolds 
number Re = U,L/v.  Suppose that the side slot has a half-width 

a = S Re-*L, 

which is small compared with the boundary-layer thickness near the slot (Re-iL), so 
that 6 < 1.  Let the flux through the slot, in either direction, be qa2 Reb.  Near the slot, 
and in the slot, we define a region called the basement (see figure 21, in which the 
equations of motion when scaled to the dimensions of the side slot are to leading order 

FIGURE 1. Laminar boundary-layer flow past a side slot. 
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in SRef the Stokes equations of motion. In  the basement it is possible to find an 
analytic solution for the regions above and below the line of the mouth of the slot. 
However we find these solutions impractical and compute the solution to the two- 
dimensional biharmonic equation using a finite-difference method, A point that arises 
from the analytic solution is that in the basement region the shear stress on the wall of 
the plate is dependent only on the transverse velocities a t  the mouth of the slot and on 
the mainstream shear. I n  view of the conventional assumption that transverse 
velocities a t  the mouth of the slot vanish, we feel this observation to be worthy of wide 
attention. 

Far from the slot, on a length scale of Re-fL, there is a region analogous to the lower 
deck of a triple-deck analysis, with the mathematical complication (but physical 
simplification) that the length scales in the directions normal and transverse to the 
plate are identical. Such a region has been considered before by Stewartson (1968) and 
Smith (1973). The analysis of the lower-deck region shows that, far from the side slot 
and on the plate, the shear stress decays like 121-4 and depends on both the normal and 
the tangential motions a t  the mouth of the slot. However, on the plate with 

GRe-*L < 121 < Re-2L 

the behaviour of the shear is like ]5?-z and to leading order is independent of motions 
normal to the mouth of the slot, thus matching with the result obtained for the base- 
ment region. 

If one goes further from the side slot the disturbance caused by the slot is smaller 
than the perturbation caused by the boundary layer growing over the plate, and 
essentially in our analysis there is no disturbance to the main body of the boundary 
layer. Our solution to the two-dimensional problem can give only broad guidelines to 
physiological problems and we are attempting to establish a solution to the corre- 
sponding thee-dimensional problem. 
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FIGURE 2. Structure of solution for flow through a side slot. 



36 I .  J .  Sobey 

2. Analysis of the basement region 
On the length scale of the side slot the main body of the boundary layer is far away 

and locally there is linear shear flow past the slot. As the flux through the hole is 
assumed small the transverse and normal length scales are identical, and to leading 
order in 6 Re-4 the local flow is Stokes-like. 

Define 5 = 2/a and 7 = g/a and if 7 > 0 let 

and 

Then the equations motion reduce to a single equation for the stream function $.+: 

The equation for the stream function $- is then 

V4$- = qa2 Re*(a(V2$-, $-)/a(& 7) + $( 1 - t2) V2$-v - #$-?I. (4) 

The scaling (1) and (3) of the velocities breaks down when IqI = 0 and as Iql -+ co. For 
the present we exclude these cases, assuming IqI = O(1).  The matching conditions 
between @+ and $- are that the shear and normal stress should be continuous on 
7 = 0, for 151 < 1, as should the velocities. 

To match the velocities across 7 = 0, 

[a$+/a71v=o- = [a$-/a7l7=O-, 161 < 1,  (5a)  

and [ a $ + / a ~ i ~ = ~ -  = [ a $ - / a t ; ~ , = ~ -  + $(I  - t2), 151 < 1.  (5 b) 

(al,=,-).n = (a/,=o-).n. (6) 

The conditions for continuity of stress are, if Q is the stress tensor and n = ( 0 , l )  the 
normal to the surface, 

Using a plus or a minus subscript to represent values of a function for 7 2 0 and 7 < 0 
respectively, the stress continuity conditions reduce to 

P+ =P- on 7 = 0, 151 < 1, (7)  

and @'(o)+q$+vq = on 7 = 0, 1.51 < 1,  (8) 

fi = qV$p/Re. (9) 

$+ = $+, + 0 ( 6  Refa) ( 1 0 4  

and $- = $- ,+O(SRe+~),  ( lob)  

in which case V4$+, = V4$-, EE 0. (11)  

where p is the pressure, defined by the scaling 

We expand the solution to (2)  and (4) as an asymptotic series in 6 Re%, 
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Thus to leading order the solution in the basement satisfies the Stokes equations of 
motion. The asymptotic expansion (10) breaks down when 

6 R e t r  = O( 1 )  (12) 

and that region forms the lower deck. The complete statement of the problem for $+o 
and $-o also requires 

$+o-+O as 52++2-+co, ( 1 3 a )  

$ - o + O  as q-+ -a, 151 < 1, (13b)  

together with the no-slip conditions on the walls 

Il’+ot = $-oq = 0 on 7 = 0, 151 2 1, (14a)  

and = $.-oq = 0 on 7 < 0, 161 = 1. (14b) 

We define the velocities at the mouth of the slot to be 

and 

T h e  upper basement region (7 > 0) 

The solution for $+o is given by Sneddon (1951, p. 296) :  

From this solution the pressure a t  the mouth of the slot is 

whilst the shear on the wall and a t  the mouth of the slot is 

where Ul = W ( 0 ) .  
In  Stokes-flow problems with sources and sinks it is conventional to take V to 

behave like a delta function and to assume that U vanishes. The above results show 
that even in the case of a point singularity it is incorrect to assume such a boundary 
condition unless 

K = s’ U(5’)d t ’  = 0. 
-1  

Indeed far from the hole 

since by construction 
P+lv=0 = - 2/nc2 + o(5-3), 

1’ v(g’)dg’ = 1 ,  
- 1  
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FIQURE 3. Geometry of 270" corner. 

Flow near the corners 
The expressions (17)  and (18) for the pressure and the shear in general have a singu- 
larity near 151 = 1.  Consider 

wheref(5) = 0 for 151 = 1.  Then near x = 1 

and unless f'(1) = 0 there will be a singularity as + 0. If f (1  +el) N e: when 
0 < el < 1 with h < 1, the singularity will be like &'. 

Flow near a corner has been studied by Dean & Montagnon (1949), Moffatt (1964) 
and Weinbaum (1968). We illustrate the geometry of a right-angled obtuse corner in 
figure 3. The solution for the stream function can be found as a series 

where (r,  0) are polar co-ordinates illustrated in figure 3. For small r the solution is 
found to be approximately 

(23) 

where fA(@ is an even function of 8 and gJ6) is odd. Weinbaum shows that h = 1.544 
and p = 1.909. The functions f A  and g, are 

$ z rAfk(8) + rpg,(8) + o(rA + r,), 

and 

cos ( A  - 2) 8) 
cos ha 

cos ( A  - 2) a 
fA(s) = A cos he- I 

sin(p-2)8 , 1 sin pa 
sin (p - 2) a 

where a = Bn. From this we see that near the corners the shear and pressure will have 
singularities O(r-0.455) as r -+ 0. 
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FIGURE 4. Region of finite-difference solution, showing boundary 
conditions at  the walls and a t  the edge of the flow region. 

A numerical solution for the basement region 

I n  order to obtain a solution for the basement region we have solved the biharmonic 
equation using a finite-difference scheme. Since the main interest in the solution for 
the basement region is the computation of K ,  

1 

-1 
K = 1 U ( t ) d t ,  

we have used a coarse uniform grid (spacing 0-2) in the regions - 6 < 6 Q 6 , O  < 7 6 6 
and - 3 Q 7 Q 0, - 1 Q 5 Q 1. The region of solution is shown in figure 4. The boundary 
conditions which involve derivatives a t  the wall have been simulated by introducing 
fictitious grid points outside the flow region. On 5 = f 6, 0 < 7 < 6 and on 7 = 6, 
- 6 < c < 6 the flow field was simulated by introducing grid points outside the flow 
region and then calculating the stream function from the formula 

Equation (25) is the form of $ obtained by assuming plane Poisseuille flow a t  the 
mouth of the slit. Clearly this will be in error because of the deviation of the normal 
velocities at the slot mouth from Poiseuille flow and because of the existence of 
transverse velocities a t  the slot mouth. However for large S the stream function a t  the 
boundary of the computational area is dominated by the linear shear term, whilst for 
small S, as we show below, the corrections are proportional to S and hence asymptoti- 
cally small compared with the linear shear term as one moves far from the slot. The 
finite-difference equations were solved using an over-relaxation method with iterations 
in alternate directions. We note that the flow through the side slot has been scaled to 
have unit flux, which makes the upstream shear S = UJq. Rewriting (1) and (3) we 
have, if 7 > 0, 
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aAd 

Thus we may scale q out of the problem and have only S as an independent parameter. 
If $ij is the value of the stream function a t  the point (i,j) then the new value a t  each 
iteration is 

4ij = a['(4i+l, j + 4i-1, j + 4i, j+l + 4i, j-1) 

- '(4i+1, j+l+ 4i-1, j+l + 4i+l, j-1+ 4i-1, i-1) 

- (4i+2, j + 4i-2, j + 4i, ji-2 + 4i, j-2)I + ( 1  - a) 4ii. (26) 

After some experimentation we chose a = 1.9 as a value which gave sufficiently rapid 
convergence. However for S = 2 convergence was improved by taking a = 1.5. The 
total computational grid consisted of 1982 grid points. The solution was continued 
until 

was less than some predetermined value E. Usually E was chosen as 0.05 but for some 
runs the accuracy of the solution was checked by taking E = 0-025. The values of K 
were found by extrapolation assuming an exponential approach to the true value. This 
was suggested by Hinch (1976, private communication). Thus if after N iterations K ,  
is the calculated value of K ,  we compute K by assuming 

K - Ke-A/N 
N -  

for some value of A. The extrapolated value for K was generally within 10 yo of the 
value a t  the last iteration. 

We present in figures 5 (a)-(d) the computed contours of the flow for S = 0.05,0.25, 
0.5 and 1.0. It can be seen that for S 6 0-5 there is a stagnation point on che plate away 
from the downstream corner. Thus in the immediate vicinity of the corner there may 
be a region of reversed flow. On a length scale comparable with the slot width the shear 
is generally increased. We show this in figure 6, where the shear on the plate is plotted 
for U, = 1 and q = 0.5, 1.0 and 2.0. These graphs were computed from (18) as the grid 
used was too coarse to  allow accurate computation of the shear on the wall. I n  figure 7 
we plot the value of the parameter K/q as a function of S. We find that Kiq is pro- 
portional to S, which means that the shear correction far from the hole depends 
only on Ul and not on q. We calculate 

Kiq = 0.41 UJq. 

As far as the accuracy of our work is concerned, given the coarseness of the grid, the 
solution to  the finite-difference equations is accurate to within a few per cent. However 
we have not determined the effect of increasing the resolution of the grid, or of 
increasing the computational area. 

3. Analysis of the lower-deck region 
The asymptotic series for $+ given by (10) breaks down when the term S2 Re*yV2$+S 

becomes comparable with the term V44+ in (2). As one moves away from the slot into 
the lower region of the boundary layer, inertia effects become important and simul- 
taneously the slot takes on the appearance of a point disturbance, but with novel 
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FIGURE 5 .  Streamlines of basement solution for (a) S = 0.05, 
( b )  S = 0.25, ( c )  S = 0.5 and (d) S = 1.0. 

boundary conditions, namely that there is a delta-function disturbance in both the 
normal and the transverse direction. 

E = 6Rei 6 1, 
Let 

and define (2, y )  by x = €5, y = €7. (27 1 
This corresponds to 2 = Re-SxL and g = Re-SyL. The velocities are scaled by 

where the stream function in the lower deck is denoted by $ to distinguish it from the 
basement stream function $+. The governing equation for $ is then 

+ Ref[%(Re-&y) Vz$z - a24"(Re-*y) $J. (29) 
The boundary conditions are 

$ v l y = o  = E-'u(E-'x), $&, = s-lV(s-'z) (30% b )  

and $ + O  as xz+ya+m. (30G) 
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FIGURE 6. Calculated shear a t  the wall for U, = 1.0 and q = 0.5, 1.0 and 2.0. 

S 
FIGURE 7 .  Values of Klq plotted against S. A, computed values. 
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Letf(k) be the Fourier transform of a functionf(x), defined by 

f (k )  = Srn e-ikrf(x) dx. 
- w  

Taking Fourier transforms of the boundary conditions gives 

We now expand $ as an asymptotic series 
- 
@ = g 0 + O ( R e - * )  (33) 

to obtain D4p0- ikUl, D2$o = 0,  (34) 

where D2 = d2/dy2 - k2, (35) 

together with the boundary conditions 

and 

The expansion of the boundary conditions breaks down if k-l = O(E-~),  i.e. x = O ( E ) ,  
where one would be back in the basement and the side slot would no longer have the 
appearance of a point singularity. 

Let G = D2q0; (37) 

then (D2-ikUly)G = 0. (38) 

This is a variant of Airy’s equation and appeared in Stewartson (1968)’ where the 
boundary conditions were more complicated and a Weiner-Hopf technique was used 
to determine the solution for boundary-layer flow near the trailing edge of a flat plate. 

In  the literature dealing with the application of triple-deck analyses to humps 
(Smith 1973; Hunt 1971; Brighton & Jackson 1978), it is generally assumed that 
variations in the x direction are small compared with variations in the y direction, and 
hence the operator D becomes 

Indeed, from Stewartson & Williams (1969) and Smith (1973)’ when the scale in the 
x direction is not longer than that in the y direction the solution no longer has a true 
triple-deck structure as the pressure will vary across the boundary layer. The case here 
is mathematically similar to that of a short hump of dimensions Re-fL x Re-gL. 

Let [ ( y ,  k )  = (ik)) (Uk y - ikU,$), where (ilc)) = (0 + ilc)); then substituting (39) into 
(38) we have Airy’s equation for &([): 

D2 z d2/dy2 .  (39) 

d 2 B / d [ 2 - [ &  = 0. 

We eliminate solutions of the form Bi (5) to satisfy the boundary condition (36) and 
take (? = a(k)  Ai (6)‘ (40) 

where a ( k )  is an unknown function of k. 
TO obtain solutions of (37) we take 

- yG)/vwAi([’)sinh IkI ( y -  y ’ )dy ’ ,  
= A (k) e- lklv + - 
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where 5’ = [(y’, k). The boundary conditions (36) then give 

a(k)  = (K+isgnk)/Ci*(k), 

where Ci* (k) = joa Ai (5’) e-lklU’dy’. 

The function Ci* (k) can be related to the function Ci ( w )  defined by Stewartson (1968). 
Let y’ = Ui*Y and k = U t w ;  then 

Ci* (k) = U;*Ci ( w ) .  
Thus we may rewrite (42) as 

a(k)  = ( K  + i sgn k) /U;*  Ci ( U ; t k ) ,  (43) 

where Ci ( w )  = lom Ai ((iw)* ( Y  - i w ) )  e-lulY d Y .  (44) 

We also have 
A(k) = --+- a ]mAi(c)sinhIkl y’dy’ .  

ik Ikl 0 

To calculate the shear on the wall we must evaluate ~ o y y l y = o .  We have 

(45) 

where Ai (0) = Ai ( - (ik)-iikU;$, 

and thus $oyyly=o = i k +  (K+isgnk)/U;*K(U$k), (47) 

K(w)  = Ci (w)/Ai ( - iw(iw)*). 

where K ( w )  was defined by Stewartson (1968) to be 

(48) 

We use the asymptotic expansions of K(w)  for Iw(  9 1 and IwI< 1 obtained by 
Stewartson to determine the asymptotic forms of the shear on the wall for 1x1 < 1 and 
1x1 B 1.  However because of the restriction k-1 = O(s-1) the lower-deck solution does 
not allow the shear to be obtained very near the slit. The pressure po(x)  on the wall is 
found from 

.Po(k) = (ik)-1D2F01y=0, (49) 

whence po(k) = a(k) (ik)-%U;Ai’(O). ( 5 0 )  

Asynaptotic analysis of the lower deck 

Here we shall derive the leading terms of the asymptotic series for the shear and the 
pressure on the wall when 1x1 B 1 and 1x1 < 1.  Stewartson (1968) has shown that for 

K(w)  % 1/2 101, (51) 
IwI 3 1 

w-hilst for 1 0 1  < 1 Ci ( w )  z 1/3(ko)*. (52) 

The shear on the wall, under the scaling (28),  is given by 

v+ I U=o = L\ + qa2 Re* @ayy I y-0, 

and for Ikl 3 1 and B lkl< 1,  
- 
$ovy/g=o 3 ik+1(K+isgnk)  Ikl. 

(53) 

(54) 
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Then using Lighthill (1958) to invert the Fourier transforms gives 

c+ly=, x U,+2K13~Rej/nrx~, 6Re*< x <  1.  (55) 

This agrees exactly with the expansion of (20)) the basement solution for large 1g1. 
If lkl< 1 we have 

l / K ( w )  x 3 Ai (0) (iw)*, (56) 

and hence $oyy(21=o x ik+3(K+isgnk)Ai (0) (ikU;*)t/U,&. (57) 

Thus inverting the Fourier transforms yields 

77 
V + l y = O  Zi u,+ 

It is of some interest to examine the components of the shear in dimensional form. If 
we let 2 be the dimensional equivalent of 

then 
For 12/LI = O(6) 

2 = da U,qK. 

If l2/LI = O(Re-)), which here implies, since &Re*< 1, that d <  Re-i< 1, 

Ai (0) I?(+) cos (1  - 4 sgn (i)) 1 
6 jf 

- 3 4  Re3 U )  Ai (0) r(i) sin? (1 - 4 sgn (g)) 1 ;I-’]. (60) 
u, L77 6 

We see that in this region of the wall the shear is strongly dependent on the source 
strength, with a multiplier of Re* whilst the transverse impulse has a multiplier of 
Re*. Thus, far from the slot, the source-like behaviour dominates, showing that in this 
region the approximation of zero transverse velocities a t  the mouth of the slot is a good 
approximation. 

po z Ut(K - i sgn k) 3(ik)-f.&’(O). (61) 
- If lkl< 1 

Taking transforms, we find 

1 77 77 3UfAi’ (O) r(- ’) ( 1  + 2 sgnx) - sin- (1  + 2 sgnx) . (62) Po(4 M 77 1x18 6 

The decay, like \ X I - * ,  agrees with that obtained by Brighton & Jackson (1978) for the 
decay of the wall pressure on a plate with a long slender hump on it. 

When Jkl 9 1 
Po = Ut(K - i sgn k) (ik)) Ai’(8)lik K(kU; i )  Ai (8). (63) 

Since large1 = $77, we may use the expansions for Ai(8) and Ai‘(8) for large 181 
given by Abramowitz & Stegun (1965, p. 44) to  obtain 

Ai’(O)/Ai (8)  z - 84. (64) 
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Hence - 
po z 2(K - i sgn k) ik, (65 )  

and thus P O ( 4  = 2/nx2, (66) 

fj x (@UoL) UtRe-4 Ii2/L1--2, 

which agrees with the expansion of the basement solution for large IgI. I n  dimensional 
terms, if 12/L1 = O(6) 

and if 1i2/LI = O(Re-3) we have 

(67) 

3UiU!Ai’(O)r(-+) 2 -# I? 
fjz /z/ (- Ref cos 9 6 (1 + 2 sgn (g)) 

?r UOL 

-- UOL 6 Re-&sinz 6 (l+Zsgn(;)>). (68) 

Once again the dominant contribution will be from the source term 6 Re-Q U;l L-I. 

4. Conclusions 
We have seen how a consistent model of flow through a small side slot may be 

developed using a combination of modern boundary-layer theory and classical low 
Reynolds number flow theory. From a practical viewpoint, the model is severe in its 
assumptions of small flux through the side slot and small dimensions of the slot 
relative to the boundary-layer thickness. We have excluded many of the interesting 
situations in which the main body of the boundary layer is either blown off the plate 
or is largely removed by the side slot. What we have shown is that adequate attention 
must be paid to the dynamics near and in the side slot if an accurate model is to be 
obtained . 

I n  the descending aorta, if we suppose that a disturbance boundary layer develops 
on the walls, we may take L = O(l0-100mm) and a = 0(1 mm). The Reynolds 
number of the boundary-layer flow will be Re = RL/A, where R is the Reynolds 
number based on the aortic radius A .  If A = O( 10 mm) then R < Re < 10R and since 
a = 6 Re-) L we have 10-2R < 6 < R and thus 

10-2RQ < 6Rei < 1.78 Rb. 

In  the descending aorta, where the peak values of the Reynolds number are O( lo2-lo3), 
it  is probable that 6 > 1 and &Re% > I for much of the flow cycle, whilst 6 < 1 and 
6 Re% < 1 only when R = O(10). Further work is necessary before this theory can be 
conclusively applied to the intercostal arteries. However we can note that (20) and (60) 
show that on the scale of the side slot the wall shear stress increases on both sides of the 
slot. Our numerical work shows that there may be a region of reversed shear near the 
downstream corner, in which case the shear on the upstream wall is larger than that 
on the downstream wall. Presumably, as well as faster-moving fluid being moved to the 
downstream wall, the fluid upstream is accelerated, leading to increased wall shear 
stress upstream of the slot. 

I am grateful to  Dr T. J. Pedley for invaluable advice and guidance and to Dr M. 
Roach for bringing the problem to my attention. I acknowledge receipt of a Common- 
wealth of Australia C.S.I.R.O. post-graduate scholarship. 
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